
Improving Performance of
All-to-All Communication
Through Loop Scheduling
in PGAS Environments

Michail Alvanos
Gabriel Tanase
Ettore Tiotto
Montserrat Farreras
José Nelson Amaral
Xavier Martorell

Loop Scheduling
Core idea: schedule the accesses to ensure that
each thread will not access the same shared data

The compiler categorizes the loops in two categories
based on the loop upper bound and type of accesses

Skew loops and start from a different point
 - NEW_IV = (IV +MYTHREAD×Block) % LOOP_UB;

 Where

Loop Transformation Approaches

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Barcelona Supercomputing Center, c/ Jordi Girona 31, 08034 Barcelona, Spain

Current state & ongoing research
Demonstrated performance improvements using several
applications, further tuning underway

Microbenchmarks: slightly lower performance that the
manual optimized benchmark

The optimization is effective and scales well, when the
communication takes a considerate amount of time

Current research aims to 1) decrease the overhead of compiler
2) Find more optimal traffic scheduling 3) Cover more cases

Platform
XL UPC framework

Power775: 32 Nodes x 32 Cores

Candidate Loop

upc_mem*
calls ?

Is UB
THREADS ?

Skew loop iterations

Use a shuffled array with
the number of threads

NO

NOYES

YES

Node 0

Drawer 1

Node 7...Node 1

Node 0

Drawer 0

Node 7...

SuperNode 0

Node 1

Node 0 Node 7...Node 1

Node 0

Drawer 3

Node 7...Node 1

Drawer 2

...

......

To other SNs

D Links

Partitioned Global Address
Space (PGAS)

Goal: Simplicity of shared-memory...

...with efficiency of the message-passing paradigm

Shared or distributed memory

Unified Parallel C (UPC): ISO C 99 extension

FIG

...

shared int *p2;

int *p1;

S
h

a
re

d
P

ri
v
a
te

P P P P

Manual or compiler code
optimization is required

Motivation
All-to-all communication suffer
from node oversubscription

Loop scheduling for better
network utilization

We propose

Strided accesses: starting from a different Node
 - NEW_IV = Block×(IV ×33+MYTHREAD) % LOOP_UB;

Random shuffled: when the upper bound is the
number of threads

shared [N/THREADS] double X[N];
shared [N/THREADS] double Y[N];

// Example All-to-all
void memget_threads_rand(){
 uint64_t i=0, block = N/THREADS;
 double *lptr = (double *) &X[block*MYTHREAD];
 uint64_t *tshuffle = __random_thread_array();

 for (i=0;i<THREADS;i++){
 uint64_t idx = tshuffle[i];
 upc_memget(lptr, &Y[idx*block],
 block*sizeof(double));
 }
}

Example Transformed Code:

Compiler loop transformation

The compielr inserts the new code and replaces any
occurance of the induction variable

Hub-Chip: High-Radix topology

Spread communication across all the nodes
 - Avoid node over subscription
 - Avoid network hotspots

NAS FT achieves a speedup between 3% up to 15% due to
all-to-all transpose

32 64 12
8

25
6

51
2

10
24

20
48

UPC THREADS

600

60

6

G
B
/s

Baseline
Compiler
Hand Optimized

UPC Memput

32 64 12
8

25
6

51
2

10
24

UPC THREADS

40

4

0.4

G
B
/s

Baseline
Compiler
Hand Optimized

Fine grained get

32 64 12
8

25
6

51
2

10
24

20
48

UPC THREADS

600

60

6

G
B
/s

Baseline
Compiler
Hand Optimized

UPC Memget

32 64 12
8

25
6

51
2

10
24

UPC THREADS

500

50

5

G
O
p
/s

Baseline
Compiler

FT

32 64 12
8

25
6

51
2

10
24

20
48

UPC THREADS

10000

1000

100

G
O
p
/s

Baseline
Compiler

Bucketsort

Bucket-sort achieves 3-8% performance grain except when
running with 32 UPC threads

