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: : 2. Grid Decomposition Method
Motivation Define four data structures to make data locality consistent with that of

Density functional theory (DFT) the clustered atoms for minimizing inter-process communications.
Quantum mechanical modeling method used to investigate the electro- | Structure A Structure B
nic structure of many-body systems in physics and chemistry. Charge density: (case of abc)

Petaflops era and beyond A—B-C

J The K computer with approximately 700,000 cores. Y

d Exaflops machines with millions of cores expected to arrive by 2020. Hartree potential by FFT

OpenMX (Open source package for Material eXplorer) """ peimesduare.or B(abc)—B(cab)—B(cba)

J Linear scaling DFT code. - —B(cab)—B(abc)

J Large-scale calculations demanded. ~ i

P ur p ose Exchange-correlation
potential: C, D

Structure C

Structure D

Purpose
Develop a domain decomposition method for enabling large-scale DFT Y ——
calculations with hundreds of thousands of atoms and cores. . Charge mixing:

Objectives (cab)—B(cba)—B(abc)
d Approximately the same computational amount for each process. v \

3 Locality held: nearby atoms assigned to the same process. Total energy: B 5 S b
 Inter-process communications minimized.
1 Applicable to any numbers of atoms and processes.

Fig. 5: Data structures and the calculation flow.

O Aoplicable to anv distribution patterns of atoms in space 3. 3D Adaptive Order-Aware Decomposition Method for 3D FFT
4 cgfn utationall yinex ensive P P ' Automatically decompose in 1D, 2D, or 3D depending on the pro-
P / P | cess number while giving priority to lower order.

Method (e ofabo) (e ofcay (e ofcba)
1. Atom Decomposition Method /| iz

Two key ideas: (1) the modified recursive bisection method for recur-

sively decomposing the domain by constructing a binary tree, and (i)

the moment of Iinertia tensor for finding a principal axis of each sub-

domain to reorder the atoms based on their projection on the axis and

divide them into two sub-domains to fit the binary tree structure.
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Fig. 1. The modified recursive bisection method with the binary tree for 19 processes.
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Three dimensions One dimension

. : Fig. 6: The decomposition method in 2D row-wise and the communication amount.
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Fig. 2: The moment of inertia tensor for 3D-to-1D atom reordering.
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Fig. 9 : Strong scaling on the K computer: 131,072 diamond atoms (left) and 26,000 atoms
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P Summary

Fig. 3: Example of the atom decomposition method with 26 atoms. Our method

d Atom decomposition method + Grid decomposition method.
d 3D adaptive order-aware decomposition method for 3D FFT.
d The parallel efficiency at 131,072 cores is 67.7% compared to the
baseline of 16,384 cores with 131,072 diamond atoms.
Future work
d Evaluate our method with non-linear scaling methods.
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