
 Handle all cases of uncoalesced accesses

e.g. cases where difference, D, is not constant.

 Use CUPL as a preprocessor to perform data

layout transformation.

 Integrate CUPL in state-of-the-art C to CUDA

code translators.

Madhur Amilkanthwar, Shankar Balachandran

 Department of Computer Science and Engineering, Indian Institute of Technology, Madras.

{ madhur, shankar } @ cse.iitm.ac.in

CUPL : A Compile-time Uncoalesced Memory Access Pattern Locator for CUDA

 ACM SRC, ICS 2013

How to locate uncoalesced

memory access patterns in

CUDA programs at compile-time?

Suite Benchmark name Kernel name Array name

Rodinia Kmeans Invert_mapping Input

Rodinia Stream cluster kernel_compute_cost work_mem_d

NVIDIA Box_filter d_box_filter_x Id, od

NVIDIA Histogram merge_histogram d_partialHist

[1] S. Che et al. A Characterization of the Rodinia

Benchmark Suite with Comparison to Contemporary

CMP Workloads. In IISWC, pages 1-11, 2010.

[2] S. Verdoolaege. isl: An Integer Set Library for the

Polyhedral Model. In ICMS, pages 299-302, 2010.

[3] S. Verdoolaege and G. Tobias. Polyhedral Extraction

Tool. In Second Int. Workshop on Polyhedral Compilation

Techniques (IMPACT 2012), Jan. 2012

[4] CUDA programming guide. Version 5.

__global__ void kernel(int *A)
{
 for(int i=0;i<32;i++)
 A[32*threadIdx.x + i] *= 10;
}

Covert to a

valid C code
 PET

Polyhedral

representation

 Input :

 A valid CUDA kernel + kernel launch configuration.

 Output :

 Warnings if an array is accessed in an uncoalesced

<<< 1, 32 >>>

1. The problem 2. Background 3. Motivation

5. An example

8. Future work 9. References

..
32

0

D >0
Get sets of locations accessed

by any two consecutive threads

0 1 1023

..
0 1 31

32 33 63

..

..

Difference between

lowest memory

addresses

Thread 0

Thread 1

threadIdx.x

i

 0 1 2 3 .. 31

0

1

2

 3

..

3
1

Access Relation :

 S_0[i]  A[32*threadIdx.x + i]

Warning

Optimized code

runs 3.5X faster!!

Iteration domain

Kernel launch

configuration

4. CUPL

 Uncoalesced vs. Coalesced

Uncoalesced Coalesced manner.

Threads Threads

7. Results 6. Benefits

CUPL has two-fold use :

 It can help the programmer – to locate

the regions of the code to optimize.

 It can help a compiler – to locate an

opportunity to perform efficient data

layout transformations.

Better DRAM bandwidth utilization.

Less memory transactions.

