
  Handle all cases of uncoalesced accesses 

e.g. cases where difference, D, is not constant. 

 

  Use CUPL as a preprocessor to perform data 

layout transformation. 

 

  Integrate CUPL in state-of-the-art  C to CUDA 

code  translators.  
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How to locate uncoalesced  

memory access patterns in   

CUDA programs at compile-time? 

Suite Benchmark name Kernel name Array name 

Rodinia Kmeans Invert_mapping Input 

Rodinia Stream cluster kernel_compute_cost work_mem_d 

NVIDIA Box_filter d_box_filter_x Id, od 

NVIDIA Histogram merge_histogram d_partialHist 
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__global__ void kernel(int *A) 
{ 
  for(int i=0;i<32;i++) 
   A[32*threadIdx.x + i] *= 10; 
}     

Covert to a 

valid C code 
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  Input :  

     A valid CUDA kernel + kernel launch configuration. 

 

  Output :  

     Warnings if an array is accessed in an uncoalesced                                                 

<<< 1, 32 >>> 
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Access Relation :  

     S_0[i]   A[ 32*threadIdx.x + i ]  
 

Warning 

Optimized code 

runs 3.5X faster!!  
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Kernel launch 
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4. CUPL 

  Uncoalesced vs. Coalesced 

Uncoalesced Coalesced manner. 

Threads Threads 

7. Results 6. Benefits 

CUPL has two-fold use :  

  It can help the programmer – to locate 

the regions of the code to optimize. 

 

  It can help a compiler – to locate an 

opportunity to perform efficient data 

layout transformations. 

Better DRAM bandwidth utilization. 

 

Less memory transactions. 


