
!
•  To improve precision of dataflow analysis on MPI 

programs!
•  Detect communication pattern statically!

Objective!

•  Dataflow analyses to improve performance or 
debugging of MPI applications require precise 
communication information!

•  Existing techniques over-approximates 
communication behavior or employ complex matching 
algorithm to determine communication statically!

Dataflow Analysis for MPI!

!
•  Key insight: Communication is determined by values 

of rank and size of the MPI communicator!
•  Treat these variables concrete to determine values 

of target expressions in MPI function calls statically!
•  To solve message matching, replicate CFGs and 

connect send and receive operation in CFGs by 
concretely executing them!

Our Approach!

Hybrid Approach for Dataflow Analysis of MPI Programs!
Sriram Aananthakrishnan*, Greg Bronevetsky+, Ganesh Gopalakrishnan*!

*University of Utah +Lawrence Livermore National Laboratory!

!
•  Static compiler analysis technique to discover 

program properties !
•  Maintains an abstract program state for each control-

flow graph node!
•  Abstract states are modified based on the semantics 

of the statement!
•  Program execution by the analysis is a sequence of 

abstract states!

Dataflow Analysis!

if(rank == 0) {	
 a = 5;	
 MPI_Send(&a, rank+1, …);	
}	
else if(rank == 1) {	
 MPI_Recv(&b, rank-1, …);	
}	
c = b;	

Source Code	
 CFG	


Constant Propagation Analysis	
Dead Path Elimination Analysis	
Dynamic Send Receive Matching	


Slicing Analysis	


•  Each analysis instance is a composition of multiple 
analyses !

•  Each analysis instance is also a MPI process!
•  Slicing reduces the program to contain only 

statements that affect communication!
•  Constant propagation determines concrete values for 

target expressions in MPI communication calls!
•  Dead path elimination prunes out unreachable paths!
•  Communication invariance determines that 

communication is not input or message dependent!
•  Dynamic send receive matching concretely executes 

the operations exchanging CFG information to 
establish the communication edges!

Details!
!

•  Our analysis composition is based on Fuse framework 
implemented in ROSE compiler!

•  Fuse allows transparent composition of multiple 
analyses requiring no knowledge of API or 
abstractions implemented by other analyses to 
exchange information!

Fuse!

!
•  Compositional Dataflow via Abstract Transition 

Systems (Fuse), Bronevetsky et al, LLNL TR!
•  Dataflow Analysis for MPI Programs, Strout et al, 

ICPP’06!
•  Communication sensitive static dataflow for MPI – 

Bronevetsky, CGO’09!

References!


