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Introduction

I Input: Image

I Output: Mesh

I Faithful representation of the
underlying object: Fidelity

I Well shaped tetrahedra:
Quality

I Fidelity: symmetric
Hausdorff distance, ambient
isotopy

I Quality: aspect ratio,
radius-edge ratio, size

Image to Mesh Conversion

I Goal: scalability on
thousands of cores!

Parallel Image-to-Mesh Conversion (PI2M)

Statistics regarding the single-threaded performance and the
quality/fidelity achieved by PI2M and CGAL. PI2M includes the

extra overhead introduced by synchronization, contention
management, and load balancing to support the (potential)

presence of other threads.
knee atlas head-neck atlas

PI2M CGAL TetGen PI2M CGAL TetGen
#tetrahedra / seconds 67,609 40,069 98,658 96,464 29,077 61,903

time 6.5 secs 10.9 secs 4.4 secs 10.3 secs 34.1 secs 16.0 secs
#tetrahedra 439,458 436,749 434,095 993,583 991,509 990,446

max radius-edge ratio 2 4.4 18.6 2 11.2 93.4
smallest boundary planar angle 17.4◦ 24.6◦ 18.0◦ 15.8◦ 2.4◦ 15.3◦

(min, max) dihedral angles (4.6◦, 170.1◦) (2.5◦, 176.3◦) (2.9◦, 173.0◦) (4.5◦, 170.2◦) (4.1◦, 173.9◦) (0.4◦, 172.0◦)
Hausdorff distance 10.7 mm 10.3 mm - 15.3 mm 15.2 mm -

I Excellent Single-Threaded
performance

I Scalability for up to 100
cores

Bottleneck: memory latency

Execution Time
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71.9%

efficiency ≈ 100% efficiency

94%

efficiency

I Considering zero overhead for load balancing and contention,
the 106s-14s=92s is far from perfect...

I Many small packages increase traffic pressure

Data Decomposition

(0) (1) (2) (3)

(4) (5) (6) (7)

(8) (9) (10)

Block being refined

Block being sent

Block being received

Refined block

Legend

X

X
X
X
X
X
X X

X
X
X
X
X X

X
X
X
X
X

X
X
X

X
X

X

X
X
X
XX

X
X
XX

X
X
XX

X
X
XX

X
X
XX

X
X
X

X
X
X X

X
X

X
X
X
XX

X
X
X

X X

X
X
X
X
X
XX

X
X
X
X
XX

X
X
X
X
XX

X
X
X
X
XX

X
X
X
X
XX

X
X
X
X
X

I Impose an upper limit R for the elements’ circumradii

I Data subdomains of size R

I Non-adjacent subdomains are safely independent

I Improves data locality

I 69% efficiency on 10 cores

I Data Locality + PI2M: 102×6.9 = 690 concurrency in a rack
of 10 nodes

Domain Decomposition

I Data Decomposition alleviates intensive memory pressure,
but it does not eliminate it

I Domain Decomposition separates memory banks
I Delaunay admissible medial axis domain decomposition is

difficult in 3D or 4D
I Introduce artificial boundaries that do not hurt fidelity
I 66% efficiency on 48 cores

I Domain Decomposition + Data Locality + PI2M:
102×6.9× (0.66×48) ≈ 22,000 concurrency in an enclosure
of 48 racks
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